Physics 2425 Principles of Physics I

Instructor

David Hobbs Office: S117D Office Hours: MW 1:00 – 2:00 pm, TT 1:30 – 3:00 pm, F 8:30 – 11:30 am Phone: 806-716-2639 email: <u>dhobbs@southplainscollege.edu</u>

Course Description

Content

Fundamental principles of physics, using calculus, for science, computer science, and engineering majors; the principles and applications of classical mechanics, including harmonic motion, physical systems and thermodynamics; experimental design, data collection and analysis, and preparation of laboratory reports; with emphasis on problem solving.

Prerequisites

Completion of MATH 2413 - Calculus I is required before taking Physics 2425.

Textbook

The textbook is *Matter & Interactions, 4th edition* by R. Chabay and B. Sherwood (John Wiley & Sons, 2015). Textbook Errata are at <u>http://matterandinteractions.org/errata/</u>.

Course Overview

In this course we will be examining the nature of matter and its interactions. The variety of phenomena that we will be able to explain and understand is very wide, ranging from the orbit of a planet to the speed of sound in a solid. The *main goal* of the course is to have you engage in a process central to science: *modeling a broad range of physical phenomena using a small set of powerful fundamental principles*.

Approach

The course will emphasize rigorous problem-solving in physics using a student-centered active learning environment. Class sessions will require students to be responsive, to think, and to perform hands-on tasks. Key concepts of new material will be discussed in short lectures. Lab time will be interspersed with classroom discussion. If you devote a sufficient amount of time each day to studying physics, you will be in a position to attack physics problems efficiently, based on a clear understanding of the fundamental physical principles that underlie all successful analyses.

Collaborative Work

This course encourages collaborative teamwork, a skill that is valued by most employers. As you study together, help your partners to get over confusions, ask each other questions, and critique each other's homework write-ups. Teach each other! You can learn a great deal by teaching. But remember that you are responsible for understanding all details of a problem solution.

Study requirements

In addition to your time in class each week, you are expected to spend about 10 hours studying outside of class. If you typically spend less than 8 hours in outside study, you are unlikely to be able to learn the material. Less well prepared students may find they need to spend even more time than this. If you typically spend more than 12 hours in outside study, it is extremely important that you consult with me about ways to study more efficiently.

It is important to keep up with the class. New concepts introduced in this course build on earlier ones, so mastering key concepts is critical. If you get behind, seek help right away!

Attendance policy

Attendance and effort are vital to success in this course. Class attendance keeps you well connected to the course, so that you know at all times what's going on, what are the most important points, etc., and gives you opportunities to ask questions and clear up confusions. Therefore, students are expected to be in attendance for every class session. However, everybody gets sick, has some emergency, needs to care for a friend or family member or similar stuff now and then. Therefore, all students will be allowed two excused absences, <u>no documentation required</u>. The third and fourth absences will be unexcused and after a fifth absence you will be dropped from the class. If you stop attending class and wish to avoid an "F" you must obtain an official drop form, have it signed, and take the completed form to the registrar's office before your fifth absence. See the current class schedule for the last day you can drop a class.

Assignments

Course Portfolio

You will maintain all your course work (notes, handouts, checkpoint solutions, homework solutions, labs, quizzes, and exams) in a three-ring binder. These materials may be collected for grading at any time. Please make certain that you keep your portfolio up-to-date and bring it with you to every class meeting and when seeking help during office hours. <u>No late assignments will be accepted</u>. Maintaining a well-organized, up-to-date portfolio will provide you an extremely useful tool for reviewing before exams.

WebAssign

Homework and reading assignments will be delivered and graded on WebAssign, a web-based homework system. WebAssign provides immediate feedback on the correctness of your answers and allows you to make another attempt on problems you initially miss. WebAssign access codes come packaged with a new textbook if purchased from the SPC bookstore or can be purchased online.

Readings

A key component of the course is the textbook, in which you are asked to analyze phenomena, to work out small examples, to make some of the steps in derivations, etc. *Class discussion will not cover all of the assigned material; it is essential that you study the textbook carefully.* You should work all the checkpoint questions in each reading assignment and seek help on any that give you difficulty. Checkpoint solutions should be kept in your portfolio – see above.

Class sessions will be devoted to *discussion* of ideas, clarifying points of confusion, and activities of various kinds that allow you to practice using the concepts you have read about in the text. The text thus provides the *background* for these activities. *Therefore, it is essential to read the appropriate sections in the textbook BEFORE coming to class.* Your time in class will be largely ineffective if you have not studied the appropriate text sections prior to coming to class.

A reading assignment will be due in WebAssign before the start of each class session.

Homework

A WebAssign homework assignment will be due each week. For most problems in these assignments, you are allowed two free submissions per question part and a third submission that, if used, will incur a 25% penalty to your score on that part. It is therefore extremely important that you work each problem carefully on paper, in great detail, before submitting your answers. This practice is vital to learning the material and will also help you when reviewing the assignments before a test. Therefore, your solved WebAssign problems will be kept in your portfolio – see above. After the assignment due date, these written solutions in your portfolio may be collected for grading at any time. Writing good solutions provides practice in communicating your thinking process in a clear and precise way. Engineers (as well as professionals in other technical areas) actually spend a significant amount of time communicating their ideas in a way that is comprehensible to others. Being able to write clearly is an important skill for an engineer. You will also find that writing good explanations of your thinking process will improve your understanding of the physics concepts you are studying. Communicating your thinking process on paper will require writing sentences and paragraphs in addition to equations and formulas. A well written solution will include verbal explanation stating what physics principles are used, appropriate well-labeled diagrams, symbolic solution before numerical values are substituted, and correct numerical result with correct number of significant figures and correct units. Students whose work is excessively messy or difficult to read may be required to produce typed solutions.

Getting help with assignments

You should ask lots of questions in class to clear up any initial confusion you might have about a topic. I also encourage you to avail yourself of my help during office hours. You do not have to wait for my official office hours to get help; anytime I am in my office you are always welcome to come get help. If you fall behind for any reason, please let me know as soon as possible. The sooner I know about these situations, the better I can help you make up work. I will do what I can to help you complete the course satisfactorily.

Laboratory

During lab you will typically work in groups of three students on the following three kinds of activities:

- Experiments, involving measurement and analysis of data according to fundamental principles.
- Computer modeling, involving constructing 3-D models of physical systems and their motion. This will involve the VPython programming language. No previous programming experience is needed I will teach you the basic concepts needed. Some computer modeling activities may need to be finished outside of class.
- Group problem solving, involving work on large, complex problems. In lab you may begin work on a large problem to be completed outside class or the entire problem may be solved during class.

You must attend class during the day the lab is done in order to receive credit. If you have an excused absence, you will be excused from the lab you missed, and your lab average will be taken from your remaining labs. If you miss a lab, you should work with your classmates to be sure you understand the missed lab activities since these will be covered on tests.

Exams

Tests

Three tests will be given as shown on the course calendar. Each test (except test 1) will consist of two parts. The first part will cover the new material. The second part will be an optional chance to show improvement in your understanding of the material from the previous test. This optional part can be used to improve your previous test grade. These tests will be closed-book, but some relevant formulas and constants will be provided. If you have an excused absence, you will need to contact me to make up the missed test.

Final exam

A comprehensive final exam will cover all of the course material. The final exam will be closed-book, but some relevant formulas and constants will be provided. It will be given during the scheduled final exam time as shown in the schedule of classes and on the course calendar.

Grade calculation

Your final grade will be assigned based on your overall, weighted class average using the weighting scheme shown below:

Weighting Scheme				
Task	Code	Weight		
Reading	eading R			
Homework	Н	15%		
Lab	L	15%		
Tests	Т	36%		
Final	F	24%		

The letter grades will be based on a fixed scale as follows:

A: 89.5 – 100 B: 79.5 – 89.5 C: 69.5 – 79.5 D: 59.5 – 69.5 F: below 59.5

If everyone in the class does well, grades are not curved downward. Everyone can get an A. There usually is a "gray area" between two letter grades for borderline cases (grades within 0.5 points of the break point). Earning the higher grade in these cases depends on your interactions in class and whether your test and homework performance shows improvement during the course of the semester.

Miscellaneous information

In this class, the teacher will establish and support an environment that values and nurtures individual and group differences and encourages engagement and interaction. Understanding and respecting multiple experiences and perspectives will serve to challenge and stimulate all of us to learn about others, about the larger world and about ourselves. By promoting diversity and intellectual exchange, we will not only mirror society as it is, but also model society as it should and can be.

Students with disabilities, including but not limited to physical, psychiatric, or learning disabilities, who wish to request accommodations in this class should notify the Disability Services Office early in the semester so that the appropriate arrangements may be made. In accordance with federal law, a student requesting accommodations must provide acceptable documentation of his/her disability to the Disability Services Office. For more information, call or visit the Disability Services Office at Levelland (Student Health & Wellness Office) 806-716-2577, Reese Center (Building 8) & Lubbock Center 806-716-4675, or Plainview Center (Main Office) 806-716-4302 or 806-296-9611.

South Plains College does not discriminate on the basis of race, color, national origin, sex, disability or age in its programs and activities. The following person has been designated to handle inquiries regarding the non-discrimination policies: Vice President for Student Affairs, South Plains College -1401 College Avenue, Box 5, Levelland, TX 79336, 806-894-9611

Note to students with disabilities: If you have a disability-related need for reasonable academic adjustments in this course, provide the instructor with a letter of accommodation from the Disability Services Office. If you need immediate accommodations or physical access, please arrange to meet with the Disability Services Office before the next class meeting.

Core Objectives Addressed in this course:

As a part of the Texas Core Curriculum established by the Texas Higher Education Coordinating Board (THECB), the following core objectives will be addressed in this class:

Communication Skills – effective development, interpretation and expression of ideas through written, oral, and visual communication

Critical Thinking Skills - creative thinking, innovation, inquiry, analysis, evaluation and synthesis of information

Empirical and Quantitative Skills - manipulation and analysis of numerical data or observable facts resulting in informed conclusions

Teamwork - ability to consider different points of view and to work effectively with others to support a shared purpose or goal

Course Objectives

Learning objectives students should achieve to successfully complete this course:

- 1. Apply the <u>momentum principle</u> (Newton's second law of motion) to analyze and predict the future motion of a system subject to a net force (constant or varying).
- 2. Use the <u>momentum principle</u> stated in any of its various forms (update, conservation, and instantaneous form) to model the interactions of both simple and complicated systems with their surroundings.
- 3. Give examples of each of the fundamental interactions, recognizing which fundamental interaction is responsible for the forces acting between a system and its surroundings. In the case of gravitational and electrical interactions, calculate the forces between interacting particles.
- 4. Discuss how contact forces (tension, compression, and friction) can be modeled based on the internal atomic structure of solids, including determining appropriate values for the interatomic spacing and interatomic bond stiffness. Relate these microscopic properties to measureable macroscopic properties such as Young's modulus.
- 5. Apply the <u>energy principle</u> to analyze the transformations of energy within a system (including kinetic energy, potential energy, and rest energy) and the transfers of energy between a system and its surroundings (including work, energy transferred due to a temperature difference, and other energy transfers).
- 6. Distinguish between the overall mechanical energy of a large multiparticle system and its internal energy. Use specific heat to relate changes in a system's internal thermal energy to changes in its temperature.
- 7. Apply the <u>energy principle</u> to the quantized electronic, vibrational, and rotational energies of atoms and molecules, including their interactions with their surroundings by emission and absorption of photons and collisions with energetic electrons.
- 8. Use the <u>momentum and energy principles</u> together to analyze how interactions of an extended system (rigid or deformable) with its surroundings change the energies and motions of the system.
- 9. Use the <u>momentum and energy principles</u> together to analyze elastic and inelastic collisions (both head-on and scattering collisions) at speeds small compared to the speed of light and at relativistic speeds.
- 10. Apply the <u>angular momentum principle</u> in both the update and conservation forms to analyze the motions of systems subject to both nonzero and zero net torques.
- 11. Combine the <u>momentum principle, energy principle, and angular momentum principle</u> to analyze extended systems interacting with their surroundings to find changes in the system's energies and motions.
- 12. Apply the fundamental assumption of statistical mechanics to the Einstein model of a solid to determine the most likely energy distribution between two interacting systems, relating this to the definition of entropy and the second law of thermodynamics.
- 13. Calculate a system's temperature in terms of rate of change of entropy with internal energy and discuss why thermal equilibrium of two systems occurs when they have the same temperature.
- 14. Calculate the dependence of heat capacity on temperature using the Einstein model of a solid.

Calendar

		Monday	Wednesday	
Week	Readings	Topics	Readings	Topics
	08/27	Course Introduction; WebAssign Registration;	08/29	Detecting Interactions: Newton's 1st Law;
1		Vectors	11 17	Position Update Equation
			1.1 - 1./	Lab – Motion of a Fan Cart on a Track
	09/03	Labor Day – No Class	09/05	Momentum; Change in Momentum; Using
2			18 111	Momentum to Update Position
			1.0 – 1.11	Lab – VP01: Intro to Computational Modeling
	09/10	The Momentum Principle (Newton's 2 nd Law);	09/12	Predicting Motion – Varying Net Force
3	21 - 25	Predicting Motion – Constant Net Force	26-27	
	2.1 - 2.5	Lab - VP02: Computational Models of Motion 1	2.0 - 2.7	Lab - VP03: Computational Models of Motion 2
	09/17	Fundamental Interactions; Gravitational Force;	09/19	Electric Force; Strong and Weak Interactions;
4	3.1 - 3.6	Motion of Gravitationally Interacting Objects	3.7 – 3.15	for Multiparticle Systems: Collisions
	09/24	Lab – VP04: Calculating Gravitational Force	09/26	Lab – VP05: A Space Voyage Part 1
F	07/24	Test 1. Chapters 1 – 5	07/20	Forces, Normal Forces, Frictional Forces
5			4.1 – 4.8	
	10/01	Speed of Sound in a Solid: Derivative Form of	10/03	Lab – VP06: A Space Voyage Part 2 Determining Unknown Forces Using the
	10/01	the Momentum Principle; Analytical Solution	10/05	Derivative Form of the Momentum Principle
6	4.9 – 4.14	for a Spring-Mass System	5.1 – 5.5	
		Lab – Test 1 Results and Assessment		Lab – Measurement Uncertainty
	10/08	Applying the Derivative Form of the Momentum	10/10	The Energy Principle applied to a Single Particle
7	56 - 510	Principle to Curving Motion	61-66	System
	5.0 - 5.10	Lab – Determining Spring Stiffness	0.1 - 0.0	Lab – Mass/Spring Oscillator
	10/15	The Energy Principle applied to Multiparticle	10/17	Nuclear Energy; Elastic Potential Energy of a
8	6.7 – 6.11	Potential Energy	6.12 - 6.15	Interacting Neutral Atoms
			7.1 – 7.3	
	10/22	Lab – VP07: Spring/Mass Model Part 1 Energy Principle applied to Large Multiparticle	10/24	Lab – VP08: A Space Voyage Part 3 Energy Quantization
	10/22	Systems: Internal Energy, Microscopic Work	10/24	Energy Quantization
9	7.4 – 7.11	(Heat Transfer); Energy Dissipation	8.1 – 8.7	
		Lab – Problem Solving		Lab – VP09: Spring/Mass Model Part 2
	10/29	Test 2: Chapters 4 – 7	10/31	Separation of Kinetic Energy in Multiparticle
10			9.1 – 9.2	Systems into Translational, Rotational, and Vibrational Kinetic Energy: Moment of Inertia
			, , , , , , , , , , , , , , , , , , ,	
	11/05	Modeling a System as a Point Particle and	11/07	Lab – Atomic and Molecular Spectra
	11/05	Modeling a System as an Extended Object;	11/07	Energy Principles Together
11	9.3 – 9.4	Detailed Model of Friction	10.1 – 10.6	
		Lab – Test 2 Results and Assessment		Lab – Jumping upward
	11/12	Rutherford's Discovery of the Nucleus;	11/14	Angular Momentum and the Angular Momentum
12	10.7 - 10.12	Relativistic Particle Collisions	11.1 - 11.6	Principle
	10,7 - 10,12	Lab – Problem Solving	1111 - 1110	Lab - VP10: Rutherford Scattering Model
	11/19	Combining All Three Fundamental Principles in	11/21	Thanksgiving – No Class
13	11.7 – 11.11	riodeni Solvilig		
		Lab – Problem Solving	1110	
	11/26	Test 3: Chapters 8 – 11	11/28	Fundamental Assumption of Statistical Mechanics: Entropy and the Second Law of
14			12.1 – 12.4,	Thermodynamics
			12.7	Lob VD11: Statistical Machanics Dest 1
	12/03	Definition of Temperature ; Predicting the	12/05	The Boltzmann Distribution
15		Specific Heat Capacity of Solids	40.0	
	12.5 – 12.7	Lab – Test 3 Results and Assessment	12.8 – 12.9	Lab – VP12: Statistical Mechanics Part 2
1.6	12/10	Final Exam – 1:00 to 3:00 pm	12/12	
16		_		